Performance Analysis of a Deep Simple Recurrent Unit Recurrent Neural Network (SRU-RNN) in MEMS Gyroscope De-Noising
نویسندگان
چکیده
منابع مشابه
Development of A New Recurrent Neural Network Toolbox (RNN-Tool)
In this report, we developed a new recurrent neural network toolbox, including the recurrent multilayer perceptron structure and its companying extended Kalman filter based training algorithms: BPTT-GEKF and BPTT-DEKF. Besides, we also constructed programs for designing echo state network with single reservoir, together with the offline linear regression based training algorithm. We name this t...
متن کاملDeep Gate Recurrent Neural Network
This paper explores the possibility of using multiplicative gate to build two recurrent neural network structures. These two structures are called Deep Simple Gated Unit (DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), both structures require fewer parameters and le...
متن کاملDeep Captioning with Multimodal Recurrent Neural Networks (m-RNN)
In this paper, we present a multimodal Recurrent Neural Network (m-RNN) model for generating novel image captions. It directly models the probability distribution of generating a word given previous words and an image. Image captions are generated according to this distribution. The model consists of two sub-networks: a deep recurrent neural network for sentences and a deep convolutional networ...
متن کاملDR-RNN: A deep residual recurrent neural network for model reduction
We introduce a deep residual recurrent neural network (DR-RNN) as an efficient model reduction technique for nonlinear dynamical systems. The developed DR-RNN is inspired by the iterative steps of line search methods in finding the residual minimiser of numerically discretized differential equations. We formulate this iterative scheme as stacked recurrent neural network (RNN) embedded with the ...
متن کاملDeep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition
A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18124471